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New Measures of Heart-Rate Complexity: Effect of Chest Trauma
and Hemorrhage

Andriy I. Batchinsky, MD, James E. Skinner, PhD, Corina Necsoiu, MD, Bryan S. Jordan, RN,
Daniel Weiss, MD, and Leopoldo C. Cancio, MD

Background: Traditional vital signs such as heart rate, blood pressure, and
oxygen saturation are not ideal for timely and accurate assessment of
physiologic status after trauma (TR) and hemorrhagic shock (HS). Analysis
of the complex beat-to-beat variability present in the heart-rate time series
has been proposed as a “new vital sign” in this setting. We determined the
effect of chest TR and HS on heart-rate complexity (HRC) in a porcine
model.
Methods: Anesthetized swine in group II (n � 20) underwent blunt right
chest TR with a modified captive-bolt stunner; then, 10 minutes later,
hemorrhage of 12 mL/kg over 10 minutes, followed by resuscitation with
lactated Ringer’s solution, and reinfusion of blood. Group I (n � 15) served
as time controls. Two hundred beat sections of EKG waveforms were
analyzed at 7 time points: at baseline, after TR, immediately after hemor-
rhage (HS), and 1 hour, 2 hours, 4 hours, and 5 hours after HS. Several
computationally different measures of HRC were calculated, including
sample entropy, similarity of distribution, and point correlation dimension.
Results: HRC was decreased after TR, HS, and at 1 hour, manifested by
decreased sample entropy and point correlation dimension and increased simi-
larity of distribution. These HRC measures were all restored by resuscitation.
Conclusions: Several independent measures demonstrated decreased HRC after
combined TR/HS and restored HRC with resuscitation. Complexity analysis
may be useful for diagnosis of TR/HS and for monitoring resuscitation.
Key Words: Pulmonary contusion, Hemorrhagic shock, Electrocardiography,
Entropy, Complexity, Heart rate variability, Fractals, Nonlinear dynamics, Spec-
trum analysis.

(J Trauma. 2010;68: 1178–1185)

Timely and accurate diagnosis of severity of injury in
patients with trauma is an unresolved problem both in

civilian and military settings.1,2 Currently used diagnostic and

monitoring tools in the prehospital environment include phys-
ical examination and vital signs, such as the heart rate, blood
pressure, and oxygen saturation. These tools are often inad-
equate, however, to reliably assess injury severity3 or the
need to perform life-saving interventions,4 which may lead to
triage errors in patients with prehospital trauma.5 On the
battlefield, furthermore, direct contact with a casualty may
need to be postponed during combat. To meet this challenge,
the concept of “remote triage” has been proposed. This
involves the categorization of patients by analysis of teleme-
tered data such as the R-to-R interval (RRI) derived from the
EKG or the systolic arterial pressure (SAP) time series
derived from the blood pressure wave form. In particular,
beat-to-beat changes in the RRI are an untapped source of
additional information about casualty status.

One approach to extracting as much information as pos-
sible from the RRI signal involves use of measures from non-
linear dynamics.6–8 These methods allow assessment of the
complex variability present in the RRI signal. We previously
examined several such methods suitable for assessment of heart-
rate complexity (HRC) and found that they changed with vol-
ume status during hemorrhagic shock (HS) in swine9 and in
sheep.10 Changes in SAP variability during hypovolemia were
less pronounced and confined to decrease in SAP high frequency
power.9 We also demonstrated that loss of HRC, as assessed by
variables which measure signal irregularity—approximate en-
tropy (ApEn)11 and sample entropy (SampEn)12—is associated
with mortality in patients with prehospital trauma3 and with
hypovolemia in burn patients.13 In several studies, we found
HRC, as measured by SampEn, to be more diagnostically
accurate than the traditional vital signs.3,4,13

One of the new HRC measures is point correlation
dimension (PD2i), that quantifies changes in the degrees of
freedom of cardiovascular regulation.14 Degrees of freedom
are calculated from RRI phase space plots and represent
cardiovascular controllers. Hence, decrease in the degrees of
freedom is a reflection of decreased HRC. This new wave
form analysis technique has been applied in animal14,15 and
human studies,16,17 and was found to separate patients at risk
for lethal arrhythmias.16,18 The algorithm is currently FDA
approved as a tool to measure autonomic status in humans.

Our previous work suggested that HRC could be used
as a sensitive “new vital sign” for assessment of critically
injured patients, thus facilitating more accurate and earlier
diagnosis and treatment decisions.3 However, patients with
trauma frequently incur a combination of injury (TR) and
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hemorrhage shock (HS). There have been no controlled
studies of the combined effects of TR/HS on changes in HRC
in any species. The objective of this study was to determine
whether loss of complexity, as assessed by SampEn, PD2i,
and other complementary measures, occurs in a porcine
model of TR and HS. We hypothesized that HRC is de-
creased after TR and subsequent HS and is restored with
resuscitation. In addition, we also evaluated SAP variability
using the same complexity measures.

MATERIALS AND METHODS
This study was approved by the US Army Institute of

Surgical Research Animal Care and Use Committee and was
performed in accordance with the guidelines set forth by the
Animal Welfare Act, other federal statutes and regulations,
and by the 1996 Guide for the Care and Use of Laboratory
Animals of the National Research Council.

Animal Preparation
Female Yorkshire pigs (n � 35) weighing 31.1 � 0.8

kg SEM were fasted, premedicated with ketamine (1 mg/kg),
and intubated. Under isoflurane anesthesia, a tracheostomy
was performed; the right carotid artery, right external jugular
vein, and both femoral arteries and veins were cannulated;
and a Foley catheter was placed. At completion of surgery,
total intravenous anesthesia was initiated (ketamine, 200
mcg/kg/min and propofol, 100 mcg/kg/min) and continued
throughout the experiment. Anesthesia was maintained at a
constant level in both groups to minimize its effects on
calculated variables. The animals were placed on a Siemens
Servo 300 A ventilator (Siemens-Elema AB, Sweden) in the
volume-control mode, at a tidal volume of 12 mL/kg, respi-
ratory rate of 12 per min, FiO2 of 50%, and positive end
expiratory pressure of 0. Respiratory rate was adjusted to
provide normocapnia (PaCO2 � 35–45 mm Hg).

Experimental Protocol
After 1 to 2 hours of stabilization in the ICU, in the

injured group (Group II, n � 20) right-sided chest trauma was
induced at end inspiration, using a modified captive-bolt
humane stunner (Model MKL, Karl Schermer, Packers En-
gineering, Omaha, NE) as previously described by Proctor
and coworkers.19,20 A chest tube was immediately placed on
the side of the impact. Ten minutes after pulmonary contu-
sion, the animals underwent a constant-rate 12 mL/kg hem-
orrhage (corresponding �20% of total blood volume) over 10
minutes. The withdrawn blood was stored in citrated infusion
bags. After a 30-minute shock period, resuscitation with three
times the shed blood volume of lactated Ringers’ solution
was performed. Then, the shed blood was reinfused. Total
resuscitation time was 30 minutes to 40 minutes. A mainte-
nance infusion of lactated Ringers’ (4 mL/h for first 10 kg, 2
mL/h for next 10 kg, and 1 mL/h for additional kg) was then
started, and adjusted to maintain a urine output of 0.5 mL/
kg/h. Animals dying on impact or later during the experiment
were excluded from the study. Animals in the control group
(Group I, n � 15) were treated identically with respect to
premedication, anesthesia, instrumentation, general timeline,
and maintenance fluid administration, but received no TR,

HS, resuscitation, or tube thoracostomy. After completion of
the protocol animals were euthanized by an overdose of
sodium pentobarbital (Fatal-Plus, Vortech Pharmaceuticals
Inc., Dearborn, MI).

Data Analysis
The EKG of all animals was continuously monitored

and recorded at 500 Hz to a personal computer using a
DREW data acquisition system (US Army Institute of Sur-
gical Research, San Antonio, TX). EKG and blood-pressure
wave form analysis was conducted at seven discrete time
points: during baseline, after TR, immediately after comple-
tion of hemorrhage (HS), and 1 hour, 2 hours, 4 hours, and 5
hours after completion of hemorrhage. The HS time point
represented data acquired immediately after completion of
blood withdrawal, whereas the 1- and 2-hour time points
were taken immediately after resuscitation and blood reinfu-
sion, respectively. For each time point, 200-beat sections of
EKG and blood-pressure waveforms were imported into
WinCPRs software (Absolute Aliens Oy, Turku, Finland) and
analyzed as previously described.9 These data sets were the
longest ectopy-free data segments that could be identified con-
sistently in all animals in this experiment. Methodological and
clinical validity of use of 200-beat data sets was previously
verified for HRC analysis.12,21–23 Description of the analyses
used has been previously reported.3,9 Briefly, automatic identi-
fication of R waves was performed by an isoelectric line-shift
algorithm. Manual verification of R-wave detection and screen-
ing for ectopic beats was performed. Only data sets free of
ectopic beats were analyzed. Next, the software generated the
instantaneous RRI and SAP time series. Blood-pressure vari-
ability was analyzed in a manner analogous to the heart rate; for
the heart rate, the variability in the RRI was analyzed, whereas
for the blood pressure, the beat-to-beat variability in the SAP
was analyzed.

Nonlinear Analysis Techniques
HRC variables were calculated for the same 200-beat

segments using the software as previously reported (Table
1).3,9 In addition, we calculated the PD2i, which measures the
time-dependent nonstationary changes in the degrees of free-
dom of a data series.14,15 The degrees of freedom are a
measure of the number of independent variables that are
currently producing the data series, and they can be frac-
tional, as in the chaotic data produced by the Lorenz gener-
ator (df � 2.06), or integers, as in the data produced by a
sine-wave generator (df � 1.0).

In this study, PD2i analysis was performed using pro-
prietary automated software (Vicor 2.0, Vicor Technologies,
Inc., Boca Raton, FL) that takes the EKG as input, determines
the RRIs, uses several noise analyses, and then calculates the
PD2i.14,15,24 A common rule (Ni �10 exp PD2i) was used for
determining the minimum number of data points to resolve a
given number of degrees of freedom.25 In this case where
Ni � 200 RRI, the rule indicates that the degrees of freedom
between 0 and 2 can be accurately resolved. The same PD2i
parameters were used in the version of the software used for
calculation in this study (Vicor 2.0) as in previous publica-
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TABLE 1. Variable Definitions

Calculated Variables
(Abbreviations) Variable Name Comment

SampEn, ApEn Sample entropy and approximate entropy Measure the likelihood of finding similar patterns in the signal. Lower entropy
implies a more regular and less complex signal.

PD2i Point correlation dimension Measures time-dependent changes in the degrees of freedom of a data series.
A lower PD2i number signifies loss of regulatory complexity.

SOD Similarity of distributions Calculates the probability of similar RRI signal amplitude distributions as a
function of time. Higher SOD means more similar distribution and thus less
complex regulation.

FDDA, FDCL Fractal dimension by dispersion
analysis and by curve lengths

Measures of self-similarity in the signal structure at various scales. Lower number implies
lower complexity of signal regulation.

DisnEn Symbol distribution entropy The signal is represented in phase space as a sequence of symbols. The lower
the entropy of this distribution the more predictable the signal and less
complex its regulation.

FW Percentage of forbidden words The above sequence of symbols is put into “words.” Words that are not likely
to occur in a signal are called forbidden. The higher the number of
forbidden words the lower the system complexity.

StatAv Stationarity Measures changes in the mean and SD of the signal in a data set. The more stationary the
StatAv signal the lower the number and vice versa.

TP Total power Total power of periodic oscillations in the ECG as determined by Fast Fourier
Transform. Represents total heart rate variability along all frequency ranges.

LF Low frequency power A measure of the power of periodic oscillations in the ECG in the low frequency range
reflecting both sympathetic and parasympathetic influences on the heart.

HF High frequency power A measure of the power of periodic oscillations in the ECG in the high frequency range
reflecting vagal influence on the heart.

CDM LF Low frequency amplitude by complex
demodulation

A measure of the amplitude of periodic oscillations in the ECG in the low frequency
range reflecting both sympathetic and vagal influences on the heart.

CDM HF High frequency amplitude by complex
demodulation

A measure of the amplitude of periodic oscillations in the ECG in the high
frequency range reflecting vagal influences on the heart.

TABLE 2. Nonlinear Analysis Results for the RRI Signal

Variable Group Baseline TR HS 1 h 2 h 4 h 5 h

HR I 85 � 10 85 � 10 84 � 10 80 � 9 78 � 9 76 � 9 77 � 9

II 98 � 7 132 � 8* 156 � 9* 113 � 6† 107 � 6 95 � 4 97 � 4

SampEn I 1.24 � 0.09 1.32 � 0.08 1.34 � 0.07 1.28 � 0.07 1.40 � 0.08 1.20 � 0.08 1.32 � 0.10

II 1.27 � 0.05 1.02 � 0.07‡ 0.93 � 0.04* 1.06 � 0.06† 1.34 � 0.06 1.35 � 0.07 1.22 � 0.08

PD2i I 0.97 � 0.13 1.29 � 0.20 1.10 � 0.19 1.19 � 0.18 1.12 � 0.20 1.09 � 0.23 1.08 � 0.25

II 1.22 � 0.13 0.60 � 0.03† 0.53 � 0.03* 0.62 � 0.06* 0.68 � 0.09 0.73 � 0.08 0.70 � 0.07

DisnEn I 0.72 � 0.01 0.76 � 0.01 0.74 � 0.02 0.72 � 0.02 0.76 � 0.02 0.70 � 0.03 0.73 � 0.03

II 0.73 � 0.02 0.60 � 0.03* 0.67 � 0.02† 0.70 � 0.02 0.73 � 0.02 0.75 � 0.02 0.68 � 0.02

SOD I 0.17 � 0.02 0.14 � 0.01 0.15 � 0.02 0.12 � 0.01 0.17 � 0.01 0.19 � 0.01 0.19 � 0.02

II 0.16 � 0.01 0.21 � 0.02‡ 0.29 � 0.02* 0.27 � 0.02* 0.20 � 0.01 0.21 � 0.01 0.21 � 0.02

FDDA I 1.29 � 0.06 1.25 � 0.05 1.28 � 0.05 1.21 � 0.05 1.26 � 0.04 1.18 � 0.02 1.19 � 0.05

II 1.22 � 0.03 1.10 � 0.02† 1.20 � 0.05 1.14 � 0.03 1.15 � 0.02† 1.13 � 0.02 1.15 � 0.03

FDCL I 1.84 � 0.03 1.85 � 0.02 1.82 � 0.02 1.81 � 0.03 1.81 � 0.02 1.81 � 0.03 1.81 � 0.03

II 1.83 � 0.02 1.62 � 0.05* 1.76 � 0.03 1.75 � 0.02 1.78 � 0.02 1.76 � 0.03 1.72 � 0.03

FW I 54.67 � 2.02 49.40 � 2.41 49.87 � 3.14 50.13 � 2.05 47.13 � 2.90 49.07 � 3.24 50.40 � 3.72

II 50.10 � 2.43 60.21 � 2.85† 56.45 � 2.59 51.65 � 2.91 49.20 � 2.83 48.10 � 2.61 55.60 � 2.89

StatAv I 0.55 � 0.08 0.58 � 0.06 0.59 � 0.06 0.64 � 0.05 0.59 � 0.06 0.65 � 0.05 0.70 � 0.07

II 0.62 � 0.04 0.83 � 0.05† 0.67 � 0.06 0.75 � 0.04 0.70 � 0.05 0.76 � 0.03 0.74 � 0.05

Group I, controls; Group II, injured. Timepoints: TR, after chest trauma; HS, after 12 mL/kg bleed; 1 h, 2 h, 4 h, 5 h, times in hours after end of HS; HR, heart rate (beats/min);
SampEn, sample entropy; PD2i, point correlation dimension; DisnEn, normalized symbol-distribution entropy; SOD, similarity of distributions; FDDA, fractal dimension by
dispersion analysis; FDCL, fractal dimension by curve lengths; FW, percentage of forbidden words (%); StatAv, stationarity measures in arbitrary units. Data are means � SEM.
Significance by two-tailed t test.

Significance levels: * p � 0.001, † p � 0.05; ‡ p � 0.01.
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tions (Tau � 1, linearity criterion [LC] � 0.30, convergence
criterion [CC] � 0.40, plot length [PL] �0.15, and plot interval
[PI] � 4).14,15,24 Outliers �2.8 SDs from the mean were re-
moved from the RRI series by a linear interpolation spline.

Linear Analysis Techniques
Although the focus in this study was on nonlinear

techniques, we also performed frequency-domain analysis by
fast Fourier transform,9,26 calculating total power (TP) over
0.003 Hz�ms2 to 0.4 Hz�ms2; low frequency (LF) power over
0.05 Hz�ms2 to 0.15 Hz�ms2; and high-frequency (HF) power
over 0.15 Hz�ms2 to 0.4 Hz�ms2. We also measured the
amplitudes of the low frequency (CDM LF) and high fre-
quency (CDM HF) oscillations by the method of complex
demodulation.3,13,27

Statistical Analysis
Statistical analysis was performed using the software

package SAS version 9.1 (SAS Institute, Cary, NC).
Groups were compared at each time point using a Stu-
dent’s t test or the nonparametric Wilcoxon test where
appropriate. The null hypothesis was rejected at the 5%
probability level.

RESULTS
TR and subsequent HS caused tachycardia at the TR,

HS, and 1-hour time points (Table 2). Hypotension was
observed after TR and HS, and the SAP remained some-
what lower in injured than in control animals until the end
of the study (Table 3). Blood loss through the chest tube
was negligible.

Changes in HRC are provided in Table 2. TR and then
HS caused loss of HRC by several measures, which was

reversed by resuscitation. Thus, SampEn (Fig. 1) and PD2i
(Fig. 2) were lower at the TR, HS, and 1-hour time points but
were not different between groups thereafter. Normalized
symbol-distribution entropy (DisnEn) was lower after TR and
HS. Similarity of distribution (SOD) was higher after TR,
HS, and at 1 hour, decreasing thereafter to levels not different
from those in group I (Fig. 3). Fractal dimension by curve
lengths (FDCL) was lower after TR and fractal dimension by
dispersion analysis (FDDA) was lower after TR and 2-hour
time points in group II (Table 2). FW and stationarity mea-
sures in arbitrary units were higher after TR in group II.

Changes in SAP complexity are provided in Table 2
and included lower SampEn after HS; lower DisnEn after TR;
and lower FDCL after both TR and HS. FDDA did not
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Figure 1. Changes in RRI SampEn in injured (squares) vs.
controls (circles). Significance by two-tailed t test: *p � 0.05;
†p � 0.01; ‡p � 0.001.

TABLE 3. Nonlinear Analysis Results for the SAP Signal

Variable Group Baseline TR HS 1 h 2 h 4 h 5 h

CVP I 3.2 � 0.5 3.0 � 0.5 2.7 � 0.4 2.7 � 0.5 2.9 � 0.6 2.7 � 0.6 3.1 � 0.7

II 2.6 � 0.5 1.96 � 0.4 1.32 � 0.4* 4.7 � 0.6* 4.7 � 0.7 6.05 � 0.8† 5.1 � 0.7*

SAP I 120 � 3 121 � 3 120 � 3 122 � 3 122 � 3 120 � 3 118 � 3

II 120 � 3 79 � 4‡ 69 � 3‡ 112 � 3* 105 � 3‡ 106 � 2‡ 105 � 3†

SampEn I 0.54 � 0.08 0.54 � 0.09 0.55 � 0.09 0.57 � 0.07 0.54 � 0.08 0.54 � 0.06 0.61 � 0.08

II 0.53 � 0.07 0.55 � 0.07 0.32 � 0.02* 0.50 � 0.05 0.52 � 0.06 0.55 � 0.4 0.71 � 0.07

DisnEn I 0.67 � 0.01 0.70 � 0.01 0.69 � 0.01 0.69 � 0.02 0.71 � 0.01 0.71 � 0.01 0.71 � 0.02

II 0.71 � 0.01 0.66 � 0.02* 0.66 � 0.00 0.70 � 0.01 0.70 � 0.01 0.71 � 0.01 0.72 � 0.01

SOD I 0.12 � 0.01 0.11 � 0.00 0.11 � 0.00 0.11 � 0.00 0.11 � 0.00 0.11 � 0.00 0.12 � 0.00

II 0.12 � 0.00 0.11 � 0.00 0.12 � 0.00 0.11 � 0.00 0.12 � 0.01 0.11 � 0.00 0.11 � 0.01

FDDA I 1.54 � 0.06 1.60 � 0.05 1.61 � 0.05 1.52 � 0.04 1.58 � 0.05 1.60 � 0.06 1.58 � 0.06

II 1.54 � 0.04 1.47 � 0.07 1.69 � 0.04 1.58 � 0.05 1.53 � 0.05 1.51 � 0.04 1.46 � 0.05

FDCL I 1.95 � 0.02 1.95 � 0.01 1.95 � 0.01 1.92 � 0.01 1.94 � 0.01 1.94 � 0.01 1.94 � 0.01

II 1.94 � 0.01 1.89 � 0.01* 1.92 � 0.01* 1.92 � 0.01 1.92 � 0.01 1.93 � 0.01 1.92 � 0.01

FW I 63.33 � 2.19 60.87 � 2.31 61.27 � 2.68 62.13 � 2.07 61.27 � 2.21 59.93 � 1.95 58.33 � 2.87

II 60.00 � 2.15 65.05 � 1.41 69.85 � 0.74† 61.20 � 1.52 62.15 � 1.71 60.05 � 1.55 57.05 � 1.96

StatAv I 0.27 � 0.06 0.23 � 0.03 0.21 � 0.03 0.27 � 0.04 0.23 � 0.04 0.25 � 0.05 0.26 � 0.04

II 0.25 � 0.03 0.38 � 0.06* 0.17 � 0.02 0.24 � 0.24 0.30 � 0.05 0.28 � 0.04 0.33 � 0.05

Group I, controls; Group II, injured. Timepoints: TR, after chest trauma; HS, after 12 mL/kg bleed; 1 h, 2 h, 4 h, 5 h, times in hours after end of HS; CVP, central venous pressure (mm
Hg); SampEn, sample entropy; DisnEn, normalized symbol-distribution entropy; SOD, similarity of distributions; FDDA, fractal dimension by dispersion analysis; FDCL, fractal dimension
by curve lengths; FW, percentage of forbidden words (%); StatAv, stationarity. Measures in arbitrary units. Data are means � SEM. Significance by two-tailed t test.

Significance levels: * p � 0.05; † p � 0.01; ‡ p � 0.001.
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change. FW and stationarity measures in arbitrary units were
higher after HS and TR, respectively (Table 3).

Frequency domain and complex demodulation re-
sults for RRI are shown in Table 4. TR and HS caused a

decrease in TP, LF, and CDM LF, all of which persisted
through 1 hour (Table 4). HF (Fig. 4) and CDM HF were
also lower after TR and HS. This persisted through the
4-hour time point (Table 4).

Frequency domain and complex demodulation results
for SAP are shown in Table 5. TP, HF, and CDM HF were
higher after TR and HS and were restored to values not
different from controls by resuscitation.

DISCUSSION
In this study, we performed comprehensive physiologic

wave form analysis using nonlinear dynamics tools (and tradi-
tional frequency-domain methods) in a clinically relevant por-
cine model of combined chest trauma and HS (TR/HS). The
principal finding is that HRC, to include an irregularity metric
(SampEn) and a measure of the dimensions of regulation (PD2i),
decreased after TR/HS and was restored by resuscitation.
Changes in HRC were independent of changes in HF, which
remained depressed despite resuscitation. SAP complexity also
decreased in this model, but the changes were less pronounced.

Assessment of cardiovascular regulatory complexity by
means of nonlinear analysis of the structural complexity of
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Figure 2. Changes in RRI PD2i in injured vs. controls. Signifi-
cance by two-tailed t test: *p � 0.05; †p � 0.01; ‡p � 0.001.
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Figure 3. Changes in RRI SOD in injured (squares) vs. controls
(circles). Significance by two-tailed t test: †p � 0.01; ‡p � 0.001.
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Figure 4. Changes in RRI HF in injured (squares) vs. controls
(circles). Significance by two-tailed t test: *p � 0.05; †p � 0.01.

TABLE 4. Frequency-Domain Analysis Results for the RRI Signal

Variable Group Baseline TR HS 1 h 2 h 4 h 5 h

RRI TP I 106 � 56 140 � 97 81 � 43 87 � 44 72 � 35 56 � 24 81 � 38

II 94 � 30 38 � 23* 7 � 3† 7 � 2* 17 � 6 13 � 3 17 � 5

LF I 53 � 31 23 � 15 16 � 7 8 � 3 9 � 4 10 � 5 11 � 5

II 9 � 2 10 � 9* 1.5 � 0.9† 0.7 � 0.2‡ 2 � 1 2 � 0.3 1.8 � 0.5

HF I 42 � 25 86 � 70 46 � 31 54 � 38 44 � 26 24 � 15 43 � 28

II 45 � 16 4.6 � 2.8* 1 � 0.2* 1 � 0.2‡ 2.5 � 0.7‡ 2.3 � 0.5‡ 3.3 � 1.2

CDM LF I 3.9 � 1.2 3.9 � 1.0 4.9 � 1.5 2.7 � 0.6 2.9 � 0.7 2.5 � 0.5 2.7 � 0.8

II 2.9 � 0.5 2.4 � 1.1‡ 1.2 � 0.3* 1.1 � 0.1* 1.5 � 0.3 1.6 � 0.2 1.5 � 0.2

CDM HF I 4.4 � 1.2 7.3 � 2.8 5.8 � 1.9 6.1 � 1.8 6.3 � 1.9 4.7 � 1.3 5.5 � 2

II 7.0 � 1.4 2.1 � 0.4‡ 1.4 � 0.2* 1.7 � 0.1‡ 2.1 � 0.2‡ 1.9 � 0.2‡ 2 � 0.3

Group I, controls; Group II, injured. Time points: TR, after chest trauma; HS, after 12 mL/kg bleed; 1 h, 2 h, 4 h, 5 h, times in hours after end of HS; RRI, R-to-R interval of
the EKG; RRI TP, total R-to-R interval spectral power (0.003–0.4 Hz ms2); LF, spectral power at the low frequency (0.05–0.15 Hz ms2); HF, spectral power at the high frequency
(0.15–0.4 Hz ms2); CDM LF, amplitude of the LF oscillations by complex demodulation; CDM HF, amplitude of the HF oscillations by complex demodulation. Data are means �
SEM. Significance by two-tailed t test.

Significance levels: * p � 0.01; † p � 0.001; ‡ p � 0.05.
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the RRI and SAP signals is a relatively new concept in
physiologic monitoring. Signal complexity may be assessed
by methods that assess the structural patterns, scaling phe-
nomena, dimensions, or amplitudes embedded within the
signal.9,28 Such analyses offer a “window” into the changes
occurring in underlying regulatory processes, which are
thought to involve multiple neurohormonal feedback loops,
which are hierarchically organized into cascading lev-
els.17,29,30 We think that these distinct HRC measures con-
tribute to a multifaceted view of overall cardiovascular health
and adaptability to stress. Because nonlinearity is an intrinsic
feature of sympathetic-parasympathetic interactions31 and of
the cardiovascular system as a whole,8,29 wave form analysis
techniques based on nonlinear statistical methods are specif-
ically useful for quantification of the complex changes in
state of the subject.8,9,28 In this study, the entropy measures of
HRC that assess the degree of irregularity or randomness of
the signal all decreased in the injured group, signifying
presence of a more regular or less random signal with TR and
HS. A less random signal structure is thought to reflect less
regulatory feedback in response to TR and HS. These results
are in line with our previous work in swine, in which HS
alone was associated with decreased SampEn, which was
reversed by resuscitation.9 Similarly, humans in burn shock
had low HRC upon admission which then improved with
fluid resuscitation.13 These studies and others10,32–34 demon-
strate that restoration of volume status is characterized by
increased irregularity of the RRI signal. Whether this variable
could be used as an index of resuscitation adequacy remains
to be determined.

Recent investigations of HRC during trauma included
our work in patients with prehospital trauma. HRC as as-
sessed by SampEn and ApEn were lower in more severely
injured individuals who eventually died compared with lesser
injured survivors.3 Using a different cohort of patients with
trauma, Cancio et al.4 found lower values of SampEn in more
severely injured patients with trauma that required perfor-
mance of life-saving interventions as compared with less
injured patients. A prospective clinical trial making use of
this observation will be initiated soon and that trial will also

use calculation of entropy along multiple scales using longer
data sets,35 which we recently added to our tool kit.

In this study, for the first time we also investigated
PD2i.14,17 The Correlation Dimension concept models the
cardiovascular system as a stationary strange attractor, plots
its position in phase space, and quantifies a decrease in the
dimensions of regulation of this system as a decrease in the
number of states of the system in phase space.14 Thus, a more
complex signal is a reflection of a higher number of dimen-
sions of regulation or feedback loops in action, whereas a
lower correlation dimension points to a decreased complexity
of regulation and fewer feedback loops involved.

PD2i enables continuous monitoring of changes in
degrees of freedom (dimensions) of the cardiovascular attrac-
tor.14,17 PD2i is thought to measure the degree of interaction
or “cooperation” among the various feedback loops that
control the HR.14,17 Breakdown of the couplings among these
autonomic neural loops is denoted by lower PD2i values.
PD2i has been applied under various conditions including HS
in rats, myocardial ischemia in pigs, and human cardiac
patients.14–16 During these conditions, the degrees of freedom
of cardiovascular regulation decrease as evidenced by lower
PD2i values.14,16 In this study, PD2i showed the most pro-
found decrease after TR; continued to decrease reaching a
nadir after HS; and remained decreased at 1 hour. These
changes in PD2i complement the overall finding of reduced
HRC and are in line with previous work by Skinner et al. 14

who identified decrease in PD2i in a rat model of HS.
The decrease in RRI DisnEn and the increase in RRI

FW calculated from symbol dynamics strengthen our ob-
servations of reduced HRC after TR/HS, because these
methods are methodologically distinct from the other com-
plexity metrics.33,36 Further evidence supportive of loss of
HRC in this study is the decrease in RRI FDCL and FDDA
in the injured group, both of which quantify the fractal
self-similarity of the signal.28 However, fractal scaling
methods seem to perform inconsistently28 and should be
applied with caution.

Our observation of reduced HRC after TR and HS was
also solidified by the increase in the similarity of RRI signal

TABLE 5. Frequency-Domain Results for the SAP Signal

Variable Group Baseline TR HS 1 h 2 h 4 h 5 h

SAP TP I 9 � 2 9.5 � 2 11 � 3 13 � 4 11 � 2 12 � 1 13 � 3

II 15 � 3 28 � 5* 50 � 7* 15 � 6 12 � 3 8 � 2† 7 � 1†

LF I 3 � 1 3 � 1 3 � 2 1 � 1 1 � 0.8 1 � 1 1 � 1

II 1 � 0.8 3 � 2.5 2 � 1.9 0.1 � 0 0.1 � 0.1 0.1 � 0.0† 0.1 � 0.0†

HF I 5.6 � 1.8 6 � 2 7.5 � 3 11 � 4 10 � 2 10 � 1 10 � 2

II 12.9 � 3.5 20 � 4‡ 47 � 7* 14 � 5 11 � 3 7 � 1 6 � 1

CDM LF I 1.3 � 0.5 1.3 � 0.5 1 � 0.5 0.8 � 0.3 0.5 � 0.3 0.6 � 0.3 0.9 � 0.4

II 0.5 � 0.1 1 � 0.3 0.6 � 0.2 0.3 � 0.1† 0.4 � 0.1 0.4 � 0.1 0.3 � 0.1

CDM HF I 3 � 0.4 3 � 0.4 3.3 � 0.5 3.8 � 0.5 4.2 � 0.5 4.3 � 0.3 4.4 � 0.4

II 4.5 � 0.5† 6 � 0.6‡ 9.2 � 0.7* 4.5 � 0.6 3.9 � 0.5 3.5 � 0.3 3.3 � 0.3

Group I, controls; Group II, injured. Timepoints: TR, after chest trauma; HS, after 12 mL/kg bleed; 1 h, 2 h, 4 h, 5 h, times in hours after end of HS; SAP TP, total SAP spectral
power (0.003–0.4 Hz ms2); LF spectral power at the low frequency (0.05–0.15 Hz ms2); HF spectral power at the high frequency (0.15–0.4 Hz ms2); CDM LF, amplitude of the
LF oscillations by complex demodulation; CDM HF, amplitude of the HF oscillations by complex demodulation. Data are means � SEM. Significance by two-tailed t test.

Significance levels: * p � 0.001; † p � 0.05; ‡ p � 0.01.
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distributions (SOD; Fig. 3). These findings are encouraging
with respect to SOD as an HRC metric, especially consider-
ing that it performs well with short, interrupted, and nonsta-
tionary data sets.3,21–23

Consistent with in our previous work in animals during
HS,9,10 our current experiment shows a persistent decrease not
only in the power of vagal input to the heart (RRI HF, Fig. 4) but
also in its amplitude as assessed by CDM HF—a complemen-
tary measure of vagal input to the heart. Previous work3,4,9,13,33,37

suggests that decreased vagal modulation of the heart may be an
important cause of decreases in both RRI HF and in RRI entropy
(SampEn and ApEn). However, in this study HRC returned to
levels not different from controls with resuscitation, whereas HF
and CDM HF did not. This suggests that HRC is not merely a
function of vagal input to the heart, but that it carries additional
information about cardiovascular status.

Changes in SAP HF and SAP CDM HF likely can be
explained by the well-known effect of positive-pressure
mechanical ventilation on blood-pressure variability in
hypovolemic subjects.38,39 Briefly, blood pressure oscilla-
tions, induced by positive-pressure inhalation, are more
prominent in hypovolemia. Both the hypotension and the
changes in HRC observed in this study began after TR and
before the onset of HS. Hypotension began immediately
upon impact and reached a nadir at 30 seconds to 60
seconds thereafter (data not shown). Blood loss via the
chest tube was negligible, and overt signs of bleeding were
not present. Intrapleural hematomas were not present at
necropsy. The mechanisms responsible for such posttrau-
matic hypotension may include release of vasoactive me-
diators upon pulmonary contusion or decreased stroke
volume in the setting of increased right heart afterload or
both. Regardless of the pathophysiology, this study indi-
cates that HRC may decrease not only in the setting of
hypovolemia but also during other processes which impair
cardiovascular function. In our previous studies in human
patients with trauma injury, severity was marked by more
pronounced decreases in HRC despite no differences in
blood pressure. This underlines the nonspecific nature of
HRC as a collective cardiovascular measure of health and
of the ability to withstand critical perturbations.

Taken together, our previous and current work points to
the potential use of HRC for assessment of injury severity,
monitoring of resuscitation, and recovery in patients with
trauma. HRC should be looked upon as a cumulative vital sign
that is assessed by different nonlinear methods. It is important to
note that use of different complementary methods provides
particular strength to the overall approach. Although some of the
methods used are redundant in their informational content
(ApEn and SampEn) several others are methodologically dis-
tinct (SOD and PD2i). Because each method has its particular
requirements in terms of minimal data set usable for a valid
measure, concurrent use of these methodologically distinct tools
increases the reliability of HRC assessment.

The 200-beat data sets used in this study are the longest
data sets that were available for analysis in this experiment
and are shorter than those used in some previous reports that
used 800 heartbeats for the calculation of nonlinear met-

rics.3,9,10,13 However, we recently established that 200 beats
are sufficient for accurate prediction of mortality in patients
with trauma.22,23 Thus, we anticipate that 200-beat data sets
are sufficient for the determination of changes in HRC and
cardiovascular regulatory adjustments during many trauma
applications. The data sets used in this study are also shorter
than the 5 minutes of data recommended for frequency-
domain analysis, which means that those results should be
interpreted with caution.26 Use of anesthesia may affect the
variables calculated from physiologic waveforms.14,40 We
used careful anesthesia titration via hourly performance of pinch
tests, control of jaw tone, and cardiovascular monitoring and
believe that level of anesthesia affected both experimental
groups equally. Thus, our findings are unlikely to be caused by
use of anesthetics and are more likely to be a true reflection of
the profound physiologic perturbations caused by trauma, HS,
and resuscitation. Breathing frequency and depth also have
profound effects on heart-rate variability and complexity analy-
sis and are recommended to be controlled in experimental
setting.9,41 Because we used mechanical ventilation in our ex-
periment and did not change the settings after injury we think
that our findings were not a reflection of mechanical ventila-
tion.42 Changes in HRC might be different in civilian trauma
victims and combat casualties who are not mechanically venti-
lated. We are currently investigating the specific effects of paced
as opposed to spontaneous breathing in a model of severe HS.

This study did not use continuous sliding window data
analysis. Instead, we chose to analyze discrete data sets sampled
during maximally stationary time points that followed dynami-
cally changing conditions, such as trauma, hemorrhage, and
resuscitation. A major and underappreciated caveat in continu-
ous analysis of biosignals is real-time assessment of signal
quality and nonstationarity–both of which, if not accounted for,
can jeopardize the validity of results. Along these lines we think
that discrete data analysis of “snapshots” of information as
featured in this and previous studies by our group performed on
ectopy-free data sets will retain its value as we search for reliable
continuous analysis tools that are able to deal with spurious
R-wave detection, presence of ectopy, and signal nonstationar-
ity. An additional benefit of the discrete analysis approach is that
it permits direct comparison of results acquired in different
animal and human studies where data analysis followed the
same consistent approach.3,4,9,10,13,22,23 Both the discrete and
sliding window approach, however, have distinct advan-
tages and disadvantages and are subject to active research
in our laboratory. As calls for randomized clinical trials
using HRC as a new vital sign accumulate,3,13,43 new
challenges in data processing are emerging. Specifically,
most of the currently available HRC and all frequency-
domain techniques are jeopardized by presence of ectopic
beats and other artifacts in the data. It is imperative that as
we carry this research to clinical trials, we work together
in multidisciplinary teams to take advantage of the auto-
matic arrhythmia detection capabilities that exist in the
cardiovascular device industry; to improve data capture,
storage, compression, and transmission; and to incorporate
these “new vital signs” into meaningful decision-support
systems suitable for daily clinical use.

Batchinsky et al. The Journal of TRAUMA® Injury, Infection, and Critical Care • Volume 68, Number 5, May 2010

© 2010 Lippincott Williams & Wilkins1184



CONCLUSION
Several independent measures of complex variability in

the heart rate decreased after combined TR/HS and were
restored with resuscitation. These changes were independent
of changes in traditional frequency-domain measures of
heart-rate variability such as high frequency power. Heart
rate complexity may be useful for diagnosis of TR/HS and for
monitoring resuscitation.

ACKNOWLEDGMENTS
The authors thank Kenneth Proctor, PhD, for assis-

tance with the development of the pulmonary contusion model;
William B. Weiss, MD, for participation in the animal exper-
iments; Tom Kuusela, PhD, for developing the WinCPRs
wave form analysis software; and John A. Jones, BS, for
statistical analysis of the data.

REFERENCES
1. Bellamy RF, Pedersen DC, DeGuzman LR. Organ blood flow and the cause

of death following massive hemorrhage. Circ Shock. 1984;14:113–127.
2. Carrico CJ, Holcomb JB, Chaudry IH. Scientific priorities and strategic

planning for resuscitation research and life saving therapy following
traumatic injury: report of the PULSE Trauma Work Group. Acad
Emerg Med. 2002;9:621–626.

3. Batchinsky AI, Cancio LC, Salinas J, et al. Prehospital loss of R-to-R
interval complexity is associated with mortality in trauma patients.
J Trauma. 2007;63:512–518.

4. Cancio LC, Batchinsky AI, Salinas J, et al. Heart-rate complexity for
prediction of prehospital lifesaving interventions in trauma patients.
J Trauma. 2008;65:813–819.

5. Eastridge BJ, Salinas J, McManus JG, et al. Hypotension begins at 110
mm Hg: redefining “hypotension” with data. J Trauma. 2007;63:291–
297; discussion 297–299.

6. Goldberger AL, West BJ. Applications of nonlinear dynamics to clinical
cardiology. Ann NY Acad Sci. 1987;504:195–213.

7. Buchman TG. Nonlinear dynamics, complex systems, and the pathobi-
ology of critical illness. Curr Opin Crit Care. 2004;10:378–382.

8. Goldberger AL, Giles F. Filley lecture. Complex systems. Proc Am
Thorac Soc. 2006;3:467–471.

9. Batchinsky AI, Cooke WH, Kuusela T, Cancio LC. Loss of complexity
characterizes the heart-rate response to experimental hemorrhagic shock
in swine. Crit Care Med. 2007;35:519–525.

10. Batchinsky AI, Cooke WH, Kuusela TA, Jordan BS, Wang JJ, Cancio
LC. Sympathetic nerve activity and heart rate variability during severe
hemorrhagic shock in sheep. Auton Neurosci. 2007:43–51.

11. Pincus S. Approximate entropy (ApEn) as a complexity measure. Chaos.
1995;5:110–117.

12. Richman JS, Moorman JR. Physiological time-series analysis using
approximate entropy and sample entropy. Am J Physiol Heart Circ
Physiol. 2000;278:H2039–H2049.

13. Batchinsky AI, Wolf SE, Molter N, et al. Assessment of cardiovascular
regulation after burns by nonlinear analysis of the electrocardiogram.
J Burn Care Res. 2008;29:56–63.

14. Skinner JE, Nester BA, Dalsey WC. Nonlinear dynamics of heart rate
variability during experimental hemorrhage in ketamine-anesthetized
rats. Am J Physiol Heart Circ Physiol. 2000;279:H1669–H1678.

15. Skinner JE, Carpeggiani C, Landisman CE, Fulton KW. Correlation
dimension of heartbeat intervals is reduced in conscious pigs by myo-
cardial ischemia. Circ Res. 1991;68:966–976.

16. Skinner JE, Pratt CM, Vybiral T. A reduction in the correlation dimen-
sion of heartbeat intervals precedes imminent ventricular fibrillation in
human subjects. Am Heart J. 1993;125:731–743.

17. Skinner JE. Role of the brain in ventricular fibrillation and hypertension:
from animal models to early human studies. Cleve Clin J Med. 2007;
74:S73–S78.

18. Skinner JE. Neurocardiology. Brain mechanisms underlying fatal car-
diac arrhythmias. Neurol Clin. 1993;11:325–351.

19. Moomey CB Jr, Fabian TC, Croce MA, Melton SM, Proctor KG.
Determinants of myocardial performance after blunt chest trauma.
J Trauma. 1998;45:988–996.

20. Batchinsky AI, Weiss WB, Jordan BS, Dick EJ Jr, Cancelada DA,
Cancio LC. Ventilation-perfusion relationships following experimental
pulmonary contusion. J Appl Physiol. 2007;103:895–902.

21. Zochowski M, Winkowska-Nowak K, Nowak A, Karpinski G, Budaj A.
Autocorrelations of R-R distributions as a measure of heart variability.
Phys Rev E. 1997;56:3725–3727.

22. Batchinsky AI, Salinas J, Kuusela T, et al. Rapid prediction of trauma-
patient survival by analysis of heart-rate complexity: impact of reducing
data set size. Shock. 2009;32:565–571.

23. Batchinsky AI, Salinas J, Kuusela T, Necsoiu C, Jones J, Cancio LC.
Rapid prediction of trauma-patient survival by analysis of heart-rate
complexity: impact of reducing dataset size. Shock. In press.

24. Skinner JE. Low-dimensional chaos in biological systems. Biotechnology
(NY). 1994;12:596–600.

25. Kostelich EJ, Swineey HL. Practical considerations in estimating dimen-
sion from time series data. Physica Scripta. 1989;40:436–441.

26. Heart rate variability: standards of measurement, physiological interpre-
tation and clinical use. Task Force of the European Society of Cardiol-
ogy and the North American Society of Pacing and Electrophysiology.
Circulation. 1996;93:1043–1065.

27. Hayano J, Taylor JA, Mukai S, et al. Assessment of frequency shifts in
R-R interval variability and respiration with complex demodulation.
J Appl Physiol. 1994;77:2879–2888.

28. Kuusela TA, Jartti TT, Tahvanainen KU, Kaila TJ. Nonlinear methods
of biosignal analysis in assessing terbutaline-induced heart rate and
blood pressure changes. Am J Physiol Heart Circ Physiol. 2002;282:
H773–H783.

29. Goldberger AL, West BJ. Fractals in physiology and medicine. Yale
J Biol Med. 1987;60:421–435.

30. Elbert T, Ray WJ, Kowalik ZJ, Skinner JE, Graf KE, Birbaumer N.
Chaos and physiology: deterministic chaos in excitable cell assemblies.
Physiol Rev. 1994;74:1–47.

31. Levy MN. Cardiac sympathetic-parasympathetic interactions. Fed Proc.
1984;43:2598–2602.

32. Butler GC, Yamamoto Y, Hughson RL. Fractal nature of short-term
systolic BP and HR variability during lower body negative pressure.
Am J Physiol. 1994;267:R26–R33.

33. Palazzolo JA, Estafanous FG, Murray PA. Entropy measures of heart rate
variation in conscious dogs. Am J Physiol. 1998;274:H1099–H1105.

34. West BJ, Scafetta N, Cooke WH, Balocchi R. Influence of progressive
central hypovolemia on Holder exponent distributions of cardiac inter-
beat intervals. Ann Biomed Eng. 2004;32:1077–1087.

35. Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of biolog-
ical signals. Phys Rev E Stat Nonlin Soft Matter Phys. 2005;71:021906.

36. Hao B. Symbolic dynamics and characterization of complexity. Physica
D. 1991;51:161–176.

37. Penttila J, Helminen A, Jartti T, et al. Effect of cardiac vagal outflow on
complexity and fractal correlation properties of heart rate dynamics.
Auton Autacoid Pharmacol. 2003;23:173–179.

38. deBoer RW, Karemaker JM, Strackee J. Hemodynamic fluctuations and
baroreflex sensitivity in humans: a beat-to-beat model. Am J Physiol.
1987;253:H680–H689.

39. Saul JP, Berger RD, Albrecht P, Stein SP, Chen MH, Cohen RJ. Transfer
function analysis of the circulation: unique insights into cardiovascular
regulation. Am J Physiol. 1991;261:H1231–H1245.

40. Ye Z, Zhou Q, Liu X, Zhou H. Investigating the complexity of heart rate
variability during anesthesia. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi.
2004;21:554–557 (in Chinese).

41. Brown TE, Beightol LA, Koh J, Eckberg DL. Important influence of
respiration on human R-R interval power spectra is largely ignored.
J Appl Physiol. 1993;75:2310–2317.

42. Badra LJ, Cooke WH, Hoag JB, et al. Respiratory modulation of human
autonomic rhythms. Am J Physiol Heart Circ Physiol. 2001;280:
H2674–H2688.

43. Goldstein B. How do we get from here to there? A pathway for trial
design in complex systems analysis. Crit Care Med. 2007;35:656–658.

The Journal of TRAUMA® Injury, Infection, and Critical Care • Volume 68, Number 5, May 2010New Measures of Heart-Rate Complexity During Trauma

© 2010 Lippincott Williams & Wilkins 1185


